Skip to main content

Advertisement

Log in

Electrolyte/Electrode Interfaces in All-Solid-State Lithium Batteries: A Review

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

All-solid-state lithium batteries are promising next-generation energy storage devices that have gained increasing attention in the past decades due to their huge potential towards higher energy density and safety. As a key component, solid electrolytes have also attracted significant attention and have experienced major breakthroughs, especially in terms of Li-ion conductivity. However, the poor electrode compatibility of solid electrolytes can lead to the degradation of electrolyte/electrode interfaces, which is the major cause for failure in all-solid-state lithium batteries. To address this, this review will summarize the in-depth understanding of physical and chemical interactions between electrolytes and electrodes with a focus on the contact, charge transfer and Li dendrite formation occurring at electrolyte/electrode interfaces. Based on mechanistic analyses, this review will also briefly present corresponding strategies to enhance electrolyte/electrode interfaces through compositional modifications and structural designs. Overall, the comprehensive insights into electrolyte/electrode interfaces provided by this review can guide the future investigation of all-solid-state lithium batteries.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright © 2017, American Chemical Society. b Improved wettability of Ga-doped LLZO to Li through Li-deficient compound protection. Reprinted with permission from Ref. [26]. Copyright © 2019, American Chemical Society. c Pressure-dependent Nyquist plots of Li|LLZO|Li cells. Reprinted with permission from Ref. [28]. Copyright © 2019, American Chemical Society. d Relationship between the logarithm of interfacial resistance and surface adhesion strength of Li|LLZO|Li cells. Reprinted with permission from Ref. [29]. Copyright © 2018, Elsevier

Fig. 3

Copyright © 2006, Elsevier. b 3D reconstructed rendering image of a cathode showing the connectivity of each component. Reprinted with permission from Ref. [18]. Copyright © 2018, American Chemical Society. c Visualizations of models with different active material (grey) and electrolyte (yellow) contents and sizes. The top is a 30 wt% 3 µm electrolyte and a 70 wt% 5 µm active material; the bottom is a 20 wt% 8 µm electrolyte and an 80 wt% 5 µm active material. Reprinted with permission from Ref. [38]. Copyright © 2019, John Wiley & Sons. d Exemplary active material microstructures at a 55 vol% fraction with (5, 10, 15) μm particle diameters and respective electron connected particles (yellow) and electron unconnected particles (red). Reprinted with permission from Ref. [39]. Copyright © 2019, American Chemical Society

Fig. 4

Copyright © 2017, American Chemical Society. b 2D slices of LAGPO pellets after cycling for (1) 0, (2) 24, (3) 32, (4) 44 and (5) 52 h. Dark lines represent cracks (top). Increases in crack volume and amounts of charge transfer are shown by using blue arrows and green arrows, respectively (bottom). Reprinted with permission from Ref. [42]. Copyright © 2019, American Chemical Society. c Li distribution and hydrostatic stress in a cathode at different stages of charge. Cracks, marked by black lines, propagate from corner to corner and cut off Li-ion diffusion pathways. Reprinted with permission from Ref. [46]. Copyright © 2017, Royal Society of Chemistry

Fig. 5

Copyright © 2017, American Chemical Society. b Electrochemical stability windows and potential profiles in ASSLBs. Reprinted with permission from Ref. [53]. Copyright © 2015, American Chemical Society. c Reaction and formation of an electron insulator SEI layer (left); reaction and formation of a degradation layer with high electron conductivity (right); Li potentials between Li metal and electrolytes in different interphase types (bottom). Reprinted with permission from Ref. [21]. Copyright © 2018, American Association for the Advancement of Science

Fig. 6

Copyright © 2010, American Chemical Society. b EELS O K-edge spectra across the LLZO/Li interface showing the formation of an ultra-thin tetragonal LLZO interphase. Reprinted with permission from Ref. [73]. Copyright © 2016, American Chemical Society. c O K-edge X-ray absorption spectroscopy data across the LLZO/LCO interface showing the formation of La2Zr2O7, Li2CO3 and LaCoO3 blocking interphases [79]. d XPS spectra across the LAGPO/Li interface showing the partial reduction of Ti4+ to Ti3+ in LAGPO. Reprinted with permission from Ref. [85]. Copyright © 2013, American Chemical Society

Fig. 7

Copyright © 2014, American Chemical Society. b Space charge layer effects on an LAGPO/Li2V2O5 interface. The space charge layer led to higher barriers for Li-ion diffusion and smaller exchange current density. Reprinted with permission from Ref. [98]. Copyright © 2020, Elsevier. c Li and electron distributions near an LATPO/LCO interface in the charged state (top) and typical distribution of measured potential (bottom). Reprinted with permission from Ref. [99]. Copyright © 2010, John Wiley & Sons

Fig. 8

Copyright © 2018, American Association for the Advancement of Science. b Schematic of an LPSCl/Li interface cycled at an overall current density above critical current density for striping. Reprinted with permission from Ref. [104]. Copyright © 2019, Springer Nature. c X-ray tomographic reconstructions of void phases in the interior of LLZO sintered at 1050, 1100 and 1150 °C. Reprinted with permission from Ref. [106]. Copyright © 2018, American Chemical Society. d SEM micrographs of the web structure in cycled LLZO. Reprinted with permission from Ref. [107]. Copyright © 2017, Elsevier. e Transverse view showing the leaf-like morphology of Li filaments that have penetrated into or completely through single-crystal LLZO. Reprinted with permission from Ref. [112]. Copyright © 2018, The Electrochemical Society

Fig. 9

Copyright © 2017, American Chemical Society. b Time-resolved Li concentration profiles for LCO|LiPON|Cu, Li|LLZO|Cu and Li|LPS|Pt cells. c Correlations between cumulative charge (the orange line) and cumulative neutron depth profiling counts (green dots) in the total region (surface and bulk) of Li|LLZO|Cu and Li|LPS|Pt cells at 100 °C. d Li concentration profiles in LLZO and LPS at different times during Li plating. Reprinted with permission from Ref. [24]. Copyright © 2019, Springer Nature. e Distribution of excess electrons (the yellow region) in LLZO (left) and phase-field simulation results showing isolated dendrite nucleation (right). Reprinted with permission from Ref. [119]. Copyright © 2019, American Chemical Society

Fig. 10

Copyright © 2016, Springer Nature. b Pretreatment processes for the formation of a LiF-rich SEI layer between LPS and Li. Reprinted with permission from Ref. [21]. Copyright © 2018, American Association for the Advancement of Science. c Li deposition behaviors by using LLZO electrolytes and LLZO-2 wt% Li3OCl composite electrolytes, formation of an interlayer between LLZO-2 wt%, Li3OCl and Li through the in situ decomposition of Li3OCl. Reprinted with permission from Ref. [133]. Copyright © 2018, Elsevier. d Li dendrite formation in pristine LiBH4 and Li dendrite suppression in LiF modified LiBH4. Reprinted with permission from Ref. [138]. Copyright © 2019, John Wiley & Sons

Fig. 11

Copyright © 2015, The Electrochemical Society. b Structure and characterization of hierarchical Li3PO4@NCM811 (top); impedance plots of ASSLBs using NCM811 with and without coating after 100 cycles. Reprinted with permission from Ref. [150]. Copyright © 2020, Elsevier. c Specific recommendations of coating materials obtained by high-throughput screening and detailed case studies. Reprinted with permission from Ref. [151]. Copyright © 2019, Elsevier

Fig. 12

Copyright © 2018, Elsevier. b The working principle of an all-in-one solid-state Li||S battery based on the tri-layer garnet electrolyte. Reprinted with permission from Ref. [162]. Copyright © 2018, Elsevier. c Intimate contact between LLZO and Li as enabled by the hyper-elastic substrate PDMS. Reprinted with permission from Ref. [167]. Copyright © 2020, American Chemical Society

Similar content being viewed by others

References

  1. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475

    Article  CAS  PubMed  Google Scholar 

  2. Manthiram, A., Yu, X.W., Wang, S.F.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 1–16 (2017). https://doi.org/10.1038/natrevmats.2016.103

    Article  CAS  Google Scholar 

  3. Zheng, F., Kotobuki, M., Song, S.F., et al.: Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 389, 198–213 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.022

    Article  CAS  Google Scholar 

  4. Sun, Y.D., Guan, P.Y., Liu, Y.J., et al.: Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery. Crit. Rev. Solid State Mater. Sci. 44, 265–282 (2019). https://doi.org/10.1080/10408436.2018.1485551

    Article  CAS  Google Scholar 

  5. Wang, C.W., Fu, K., Kammampata, S.P., et al.: Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020). https://doi.org/10.1021/acs.chemrev.9b00427

    Article  CAS  PubMed  Google Scholar 

  6. Lau, J., DeBlock, R.H., Butts, D.M., et al.: Sulfide solid electrolytes for lithium battery applications. Adv. Energy Mater. 8, 1800933 (2018). https://doi.org/10.1002/aenm.201800933

    Article  CAS  Google Scholar 

  7. Li, X.N., Liang, J.W., Yang, X.F., et al.: Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ. Sci. 13, 1429–1461 (2020). https://doi.org/10.1039/c9ee03828k

    Article  CAS  Google Scholar 

  8. Cuan, J., Zhou, Y., Zhou, T.F., et al.: Borohydride-scaffolded Li/Na/Mg fast ionic conductors for promising solid-state electrolytes. Adv. Mater. 31, 1803533 (2019). https://doi.org/10.1002/adma.201803533

    Article  CAS  Google Scholar 

  9. Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014). https://doi.org/10.1021/cr500003w

    Article  CAS  PubMed  Google Scholar 

  10. Wang, P., Qu, W.J., Song, W.L., et al.: Electro–chemo–mechanical issues at the interfaces in solid-state lithium metal batteries. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201900950

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xiao, Y.H., Wang, Y., Bo, S.H., et al.: Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2020). https://doi.org/10.1038/s41578-019-0157-5

    Article  CAS  Google Scholar 

  12. Tateyama, Y., Gao, B., Jalem, R., et al.: Theoretical picture of positive electrode–solid electrolyte interface in all-solid-state battery from electrochemistry and semiconductor physics viewpoints. Curr. Opin. Electrochem. 17, 149–157 (2019). https://doi.org/10.1016/j.coelec.2019.06.003

    Article  CAS  Google Scholar 

  13. Cao, D.X., Sun, X., Li, Q., et al.: Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter 3, 57–94 (2020). https://doi.org/10.1016/j.matt.2020.03.015

    Article  Google Scholar 

  14. Lim, H.D., Park, J.H., Shin, H.J., et al.: A review of challenges and issues concerning interfaces for all-solid-state batteries. Energy Storage Mater. 25, 224–250 (2020). https://doi.org/10.1016/j.ensm.2019.10.011

    Article  Google Scholar 

  15. Xu, X.L., Hui, K.S., Hui, K.N., et al.: Recent advances in the interface design of solid-state electrolytes for solid-state energy storage devices. Mater. Horiz. 7, 1246–1278 (2020). https://doi.org/10.1039/c9mh01701a

    Article  CAS  Google Scholar 

  16. Allen, J.B., Larry, R.K.: Electrochemical methods: fundamentals and applications. Wiley, New York (2001)

    Google Scholar 

  17. Han, X.G., Gong, Y.H., Fu, K., et al.: Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017). https://doi.org/10.1038/nmat4821

    Article  CAS  PubMed  Google Scholar 

  18. Choi, S., Jeon, M., Ahn, J., et al.: Quantitative analysis of microstructures and reaction interfaces on composite cathodes in all-solid-state batteries using a three-dimensional reconstruction technique. ACS Appl. Mater. Inter. 10, 23740–23747 (2018)

    Article  CAS  Google Scholar 

  19. Koerver, R., Aygün, I., Leichtweiß, T., et al.: Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017)

    Article  CAS  Google Scholar 

  20. Han, F.D., Zhu, Y.Z., He, X.F., et al.: Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1501590 (2016). https://doi.org/10.1002/aenm.201501590

    Article  CAS  Google Scholar 

  21. Fan, X.L., Ji, X., Han, F.D., et al.: Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. (2018). https://doi.org/10.1126/sciadv.aau9245

    Article  PubMed  PubMed Central  Google Scholar 

  22. Haruyama, J., Sodeyama, K., Han, L.Y., et al.: Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater. 26, 4248–4255 (2014). https://doi.org/10.1021/cm5016959

    Article  CAS  Google Scholar 

  23. Barton, J., Bockris, J.O.M.: The electrolytic growth of dendrites from ionic solutions. Proc. R. Soc. Lond. A 268, 485–505 (1962). https://doi.org/10.1098/rspa.1962.0154

    Article  CAS  Google Scholar 

  24. Han, F.D., Westover, A.S., Yue, J., et al.: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019). https://doi.org/10.1038/s41560-018-0312-z

    Article  CAS  Google Scholar 

  25. Sharafi, A., Kazyak, E., Davis, A.L., et al.: Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater. 29, 7961–7968 (2017). https://doi.org/10.1021/acs.chemmater.7b03002

    Article  CAS  Google Scholar 

  26. Wu, J.F., Pu, B.W., Wang, D., et al.: In situ formed shields enabling Li2CO3-free solid electrolytes: a new route to uncover the intrinsic lithiophilicity of garnet electrolytes for dendrite-free Li-metal batteries. ACS Appl. Mater. Inter. 11, 898–905 (2019). https://doi.org/10.1021/acsami.8b18356

    Article  CAS  Google Scholar 

  27. Huo, H.Y., Chen, Y., Zhao, N., et al.: In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries. Nano Energy 61, 119–125 (2019). https://doi.org/10.1016/j.nanoen.2019.04.058

    Article  CAS  Google Scholar 

  28. Krauskopf, T., Hartmann, H., Zeier, W.G., et al.: Toward a fundamental understanding of the lithium metal anode in solid-state batteries: an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Inter. 11, 14463–14477 (2019). https://doi.org/10.1021/acsami.9b02537

    Article  CAS  Google Scholar 

  29. Wang, M., Sakamoto, J.: Correlating the interface resistance and surface adhesion of the Li metal-solid electrolyte interface. J. Power Sources 377, 7–11 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.078

    Article  CAS  Google Scholar 

  30. Wang, J.Y., Wang, H.S., Xie, J., et al.: Fundamental study on the wetting property of liquid lithium. Energy Storage Mater. 14, 345–350 (2018). https://doi.org/10.1016/j.ensm.2018.05.021

    Article  Google Scholar 

  31. Mugele, F., Baret, J.C.: Electrowetting: from basics to applications. J. Phys.: Condens. Matter 17, 705–774 (2005). https://doi.org/10.1088/0953-8984/17/28/r01

    Article  Google Scholar 

  32. Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006). https://doi.org/10.1016/j.surfrep.2006.04.001

    Article  CAS  Google Scholar 

  33. Hlushkou, D., Reising, A.E., Kaiser, N., et al.: The influence of void space on ion transport in a composite cathode for all-solid-state batteries. J. Power Sources 396, 363–370 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.041

    Article  CAS  Google Scholar 

  34. Yamakawa, S., Ohta, S., Kobayashi, T.: Effect of positive electrode microstructure in all-solid-state lithium-ion battery on high-rate discharge capability. Solid State Ion. 344, 115079 (2020). https://doi.org/10.1016/j.ssi.2019.115079

    Article  CAS  Google Scholar 

  35. Froboese, L., van der Sichel, J.F., Loellhoeffel, T., et al.: Effect of microstructure on the ionic conductivity of an all solid-state battery electrode. J. Electrochem. Soc. 166, A318–A328 (2019). https://doi.org/10.1149/2.0601902jes

    Article  CAS  Google Scholar 

  36. Sangrós Giménez, C., Helmers, L., Schilde, C., et al.: Modeling the electrical conductive paths within all-solid-state battery electrodes. Chem. Eng. Technol. 43, 819–829 (2020). https://doi.org/10.1002/ceat.201900501

    Article  CAS  Google Scholar 

  37. Kimura, Y., Fakkao, M., Nakamura, T., et al.: Influence of active material loading on electrochemical reactions in composite solid-state battery electrodes revealed by operando 3D CT-XANES imaging. ACS Appl. Energy Mater. 3, 7782–7793 (2020)

    Article  CAS  Google Scholar 

  38. Shi, T., Tu, Q.S., Tian, Y.S., et al.: All-solid-state batteries: high active material loading in all-solid-state battery electrode via particle size optimization. Adv. Energy Mater. 10, 2070004 (2020). https://doi.org/10.1002/aenm.202070004

    Article  CAS  Google Scholar 

  39. Bielefeld, A., Weber, D.A., Janek, J.: Microstructural modeling of composite cathodes for all-solid-state batteries. J. Phys. Chem. C 123, 1626–1634 (2019). https://doi.org/10.1021/acs.jpcc.8b11043

    Article  CAS  Google Scholar 

  40. Liu, T., Zhang, Y.B., Chen, R.J., et al.: Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact. Electrochem. Commun. 79, 1–4 (2017). https://doi.org/10.1016/j.elecom.2017.03.016

    Article  CAS  Google Scholar 

  41. Chung, H., Kang, B.: Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell. Chem. Mater. 29, 8611–8619 (2017). https://doi.org/10.1021/acs.chemmater.7b02301

    Article  CAS  Google Scholar 

  42. Tippens, J., Miers, J.C., Afshar, A., et al.: Visualizing chemomechanical degradation of a solid-state battery electrolyte. ACS Energy Lett. 4, 1475–1483 (2019). https://doi.org/10.1021/acsenergylett.9b00816

    Article  CAS  Google Scholar 

  43. Zhu, J.P., Zhao, J., Xiang, Y.X., et al.: Chemomechanical failure mechanism study in NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid-state lithium batteries. Chem. Mater. 32, 4998–5008 (2020). https://doi.org/10.1021/acs.chemmater.9b05295

    Article  CAS  Google Scholar 

  44. Tian, H.K., Qi, Y.: Simulation of the effect of contact area loss in all-solid-state Li-ion batteries. J. Electrochem. Soc. 164, E3512–E3521 (2017). https://doi.org/10.1149/2.0481711jes

    Article  CAS  Google Scholar 

  45. McGrogan, F.P., Swamy, T., Bishop, S.R., et al.: Compliant yet brittle mechanical behavior of Li2S–P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater. 7, 1602011 (2017). https://doi.org/10.1002/aenm.201602011

    Article  CAS  Google Scholar 

  46. Bucci, G., Swamy, T., Chiang, Y.M., et al.: Modeling of internal mechanical failure of all-solid-state batteries during electrochemical cycling, and implications for battery design. J. Mater. Chem. A 5, 19422–19430 (2017). https://doi.org/10.1039/c7ta03199h

    Article  CAS  Google Scholar 

  47. Deng, Z., Wang, Z.B., Chu, I.H., et al.: Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J. Electrochem. Soc. 163, A67–A74 (2015). https://doi.org/10.1149/2.0061602jes

    Article  CAS  Google Scholar 

  48. Zhang, W.B., Schröder, D., Arlt, T., et al.: (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J. Mater. Chem. A 5, 9929–9936 (2017). https://doi.org/10.1039/c7ta02730c

    Article  CAS  Google Scholar 

  49. Ohta, S., Kobayashi, T., Asaoka, T.: High lithium ionic conductivity in the garnet-type oxide Li7–XLa3(Zr2–X, NbX)O12 (X=0–2). J. Power Sources 196, 3342–3345 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.089

    Article  CAS  Google Scholar 

  50. Kamaya, N., Homma, K., Yamakawa, Y., et al.: A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). https://doi.org/10.1038/nmat3066

    Article  CAS  PubMed  Google Scholar 

  51. Richards, W.D., Miara, L.J., Wang, Y., et al.: Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016). https://doi.org/10.1021/acs.chemmater.5b04082

    Article  CAS  Google Scholar 

  52. Jalem, R., Morishita, Y., Okajima, T., et al.: Experimental and first-principles DFT study on the electrochemical reactivity of garnet-type solid electrolytes with carbon. J. Mater. Chem. A 4, 14371–14379 (2016). https://doi.org/10.1039/c6ta04280e

    Article  CAS  Google Scholar 

  53. Zhu, Y.Z., He, X.F., Mo, Y.F.: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Inter. 7, 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517

    Article  CAS  Google Scholar 

  54. Zhu, Y.Z., He, X.F., Mo, Y.F.: First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 3253–3266 (2016). https://doi.org/10.1039/c5ta08574h

    Article  CAS  Google Scholar 

  55. Schwietert, T.K., Arszelewska, V.A., Wang, C., et al.: Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020). https://doi.org/10.1038/s41563-019-0576-0

    Article  CAS  PubMed  Google Scholar 

  56. Lin, D.C., Liu, Y.Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16

    Article  CAS  PubMed  Google Scholar 

  57. Wenzel, S., Leichtweiss, T., Krüger, D., et al.: Interphase formation on lithium solid electrolytes: an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion. 278, 98–105 (2015). https://doi.org/10.1016/j.ssi.2015.06.001

    Article  CAS  Google Scholar 

  58. Li, J.C., Ma, C., Chi, M.F., et al.: Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015). https://doi.org/10.1002/aenm.201401408

    Article  CAS  Google Scholar 

  59. Schwöbel, A., Hausbrand, R., Jaegermann, W.: Interface reactions between LiPON and lithium studied by in situ X-ray photoemission. Solid State Ion. 273, 51–54 (2015). https://doi.org/10.1016/j.ssi.2014.10.017

    Article  CAS  Google Scholar 

  60. Fingerle, M., Buchheit, R., Sicolo, S., et al.: Reaction and space charge layer formation at the LiCoO2–LiPON interface: insights on defect formation and ion energy level alignment by a combined surface science-simulation approach. Chem. Mater. 29, 7675–7685 (2017). https://doi.org/10.1021/acs.chemmater.7b00890

    Article  CAS  Google Scholar 

  61. Sang, L.Z., Haasch, R.T., Gewirth, A.A., et al.: Evolution at the solid electrolyte/gold electrode interface during lithium deposition and stripping. Chem. Mater. 29, 3029–3037 (2017). https://doi.org/10.1021/acs.chemmater.7b00034

    Article  CAS  Google Scholar 

  62. Wenzel, S., Weber, D.A., Leichtweiss, T., et al.: Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ion. 286, 24–33 (2016). https://doi.org/10.1016/j.ssi.2015.11.034

    Article  CAS  Google Scholar 

  63. Wu, S.N., Neo, S.S., Dong, Z.L., et al.: Tunable ionic and electronic conduction of lithium nitride via phosphorus and arsenic substitution: a first-principles study. J. Phys. Chem. C 114, 16706–16709 (2010). https://doi.org/10.1021/jp1045047

    Article  CAS  Google Scholar 

  64. Wenzel, S., Randau, S., Leichtweiß, T., et al.: Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016). https://doi.org/10.1021/acs.chemmater.6b00610

    Article  CAS  Google Scholar 

  65. Bron, P., Roling, B., Dehnen, S.: Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes. J. Power Sources 352, 127–134 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.103

    Article  CAS  Google Scholar 

  66. Sakuda, A., Hayashi, A., Tatsumisago, M.: Interfacial observation between LiCoO2 electrode and Li2S−P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem. Mater. 22, 949–956 (2010). https://doi.org/10.1021/cm901819c

    Article  CAS  Google Scholar 

  67. Chu, I.H., Nguyen, H., Hy, S., et al.: Insights into the performance limits of the Li7P3S11 superionic conductor: a combined first-principles and experimental study. ACS Appl. Mater. Inter. 8, 7843–7853 (2016). https://doi.org/10.1021/acsami.6b00833

    Article  CAS  Google Scholar 

  68. Haruyama, J., Sodeyama, K., Tateyama, Y.: Cation mixing properties toward Co diffusion at the LiCoO2 cathode/sulfide electrolyte interface in a solid-state battery. ACS Appl. Mater. Inter. 9, 286–292 (2017). https://doi.org/10.1021/acsami.6b08435

    Article  CAS  Google Scholar 

  69. Zhang, W.B., Richter, F.H., Culver, S.P., et al.: Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery. ACS Appl. Mater. Inter. 10, 22226–22236 (2018). https://doi.org/10.1021/acsami.8b05132

    Article  CAS  Google Scholar 

  70. Oh, G., Hirayama, M., Kwon, O., et al.: Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte. Chem. Mater. 28, 2634–2640 (2016). https://doi.org/10.1021/acs.chemmater.5b04940

    Article  CAS  Google Scholar 

  71. Sumita, M., Tanaka, Y., Ikeda, M., et al.: Charged and discharged states of cathode/sulfide electrolyte interfaces in all-solid-state lithium ion batteries. J. Phys. Chem. C 120, 13332–13339 (2016). https://doi.org/10.1021/acs.jpcc.6b01207

    Article  CAS  Google Scholar 

  72. Zhang, W.B., Leichtweiß, T., Culver, S.P., et al.: The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl. Mater. Inter. 9, 35888–35896 (2017). https://doi.org/10.1021/acsami.7b11530

    Article  CAS  Google Scholar 

  73. Ma, C., Cheng, Y.Q., Yin, K.B., et al.: Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett. 16, 7030–7036 (2016). https://doi.org/10.1021/acs.nanolett.6b03223

    Article  CAS  PubMed  Google Scholar 

  74. Wolfenstine, J., Rangasamy, E., Allen, J.L., et al.: High conductivity of dense tetragonal Li7La3Zr2O12. J. Power Sources 208, 193–196 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.031

    Article  CAS  Google Scholar 

  75. Kim, Y., Yoo, A., Schmidt, R., et al.: Electrochemical stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against metallic lithium. Front. Energy Res. 4, 20 (2016). https://doi.org/10.3389/fenrg.2016.00020

    Article  CAS  Google Scholar 

  76. Rettenwander, D., Wagner, R., Reyer, A., et al.: Interface instability of Fe-stabilized Li7La3Zr2O12 versus Li metal. J. Phys. Chem. C 122, 3780–3785 (2018). https://doi.org/10.1021/acs.jpcc.7b12387

    Article  CAS  Google Scholar 

  77. Afyon, S., Krumeich, F., Rupp, J.L.M.: A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries. J. Mater. Chem. A 3, 18636–18648 (2015). https://doi.org/10.1039/c5ta03239c

    Article  CAS  Google Scholar 

  78. Kim, K.H., Iriyama, Y., Yamamoto, K., et al.: Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J. Power Sources 196, 764–767 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.073

    Article  CAS  Google Scholar 

  79. Vardar, G., Bowman, W.J., Lu, Q.Y., et al.: Structure, chemistry, and charge transfer resistance of the interface between Li7La3Zr2O12 electrolyte and LiCoO2 cathode. Chem. Mater. 30, 6259–6276 (2018). https://doi.org/10.1021/acs.chemmater.8b01713

    Article  CAS  Google Scholar 

  80. Zarabian, M., Bartolini, M., Pereira-Almao, P., et al.: X-ray photoelectron spectroscopy and AC impedance spectroscopy studies of Li–La–Zr–O solid electrolyte thin film/LiCoO2 cathode interface for all-solid-state Li batteries. J. Electrochem. Soc. 164, A1133–A1139 (2017). https://doi.org/10.1149/2.0621706jes

    Article  CAS  Google Scholar 

  81. Wakasugi, J., Munakata, H., Kanamura, K.: Thermal stability of various cathode materials against Li6.25Al0.25La3Zr2O12 electrolyte. Electrochemistry 85, 77–81 (2017). https://doi.org/10.5796/electrochemistry.85.77

    Article  CAS  Google Scholar 

  82. Miara, L., Windmüller, A., Tsai, C.L., et al.: About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature. ACS Appl. Mater. Inter. 8, 26842–26850 (2016). https://doi.org/10.1021/acsami.6b09059

    Article  CAS  Google Scholar 

  83. Klingler, M., Chu, W.F., Weppner, W.: Coulometric titration of substituted LixLa(2–x)/3TiO3. Ionics 3, 289–291 (1997). https://doi.org/10.1007/BF02375631

    Article  CAS  Google Scholar 

  84. Kotobuki, M., Suzuki, Y., Munakata, H., et al.: Compatibility of LiCoO2 and LiMn2O4 cathode materials for Li0.55La0.35TiO3 electrolyte to fabricate all-solid-state lithium battery. J. Power Sources 195, 5784–5788 (2010). https://doi.org/10.1016/j.jpowsour.2010.03.004

    Article  CAS  Google Scholar 

  85. Hartmann, P., Leichtweiss, T., Busche, M.R., et al.: Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117, 21064–21074 (2013). https://doi.org/10.1021/jp4051275

    Article  CAS  Google Scholar 

  86. Wu, B.B., Wang, S.Y., Lochala, J., et al.: The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ. Sci. 11, 1803–1810 (2018). https://doi.org/10.1039/c8ee00540k

    Article  CAS  Google Scholar 

  87. Kim, H.S., Oh, Y., Kang, K.H., et al.: Characterization of sputter-deposited LiCoO2 thin film grown on NASICON-type electrolyte for application in all-solid-state rechargeable lithium battery. ACS Appl. Mater. Inter. 9, 16063–16070 (2017). https://doi.org/10.1021/acsami.6b15305

    Article  CAS  Google Scholar 

  88. Wang, S., Bai, Q., Nolan, A.M., et al.: Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. 58, 8039–8043 (2019). https://doi.org/10.1002/anie.201901938

    Article  CAS  Google Scholar 

  89. Pang, Y.P., Wang, X.T., Shi, X.X., et al.: Solid-state prelithiation enables high-performance Li–Al–H anode for solid-state batteries. Adv. Energy Mater. 10, 1902795 (2020). https://doi.org/10.1002/aenm.201902795

    Article  CAS  Google Scholar 

  90. Zhu, M.F., Pang, Y.P., Lu, F.Q., et al.: In situ formed Li–B–H complex with high Li-ion conductivity as a potential solid electrolyte for Li batteries. ACS Appl. Mater. Inter. 11, 14136–14141 (2019). https://doi.org/10.1021/acsami.9b01326

    Article  CAS  Google Scholar 

  91. Takahashi, K., Hattori, K., Yamazaki, T., et al.: All-solid-state lithium battery with LiBH4 solid electrolyte. J. Power Sources 226, 61–64 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.079

    Article  CAS  Google Scholar 

  92. Kim, S., Harada, K., Toyama, N., et al.: Room temperature operation of all-solid-state battery using a closo-type complex hydride solid electrolyte and a LiCoO2 cathode by interfacial modification. J. Energy Chem. 43, 47–51 (2020). https://doi.org/10.1016/j.jechem.2019.08.007

    Article  Google Scholar 

  93. Shi, X., Pang, Y., Wang, B., et al.: In situ forming LiF nanodecorated electrolyte/electrode interfaces for stable all-solid-state batteries. Mater. Today Nano 10, 100079 (2020). https://doi.org/10.1016/j.mtnano.2020.100079

    Article  Google Scholar 

  94. Park, K., Goodenough, J.B.: Dendrite-suppressed lithium plating from a liquid electrolyte via wetting of Li3N. Adv. Energy Mater. 7, 1700732 (2017). https://doi.org/10.1002/aenm.201700732

    Article  CAS  Google Scholar 

  95. Takada, K., Ohta, N., Zhang, L.Q., et al.: Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte. Solid State Ion. 225, 594–597 (2012). https://doi.org/10.1016/j.ssi.2012.01.009

    Article  CAS  Google Scholar 

  96. Takada, K., Ohta, N., Zhang, L.Q., et al.: Interfacial modification for high-power solid-state lithium batteries. Solid State Ion. 179, 1333–1337 (2008). https://doi.org/10.1016/j.ssi.2008.02.017

    Article  CAS  Google Scholar 

  97. Gittleson, F.S., El Gabaly, F.: Non-faradaic Li+ migration and chemical coordination across solid-state battery interfaces. Nano Lett. 17, 6974–6982 (2017). https://doi.org/10.1021/acs.nanolett.7b03498

    Article  CAS  PubMed  Google Scholar 

  98. Cheng, Z., Liu, M., Ganapathy, S., et al.: Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries. Joule 4, 1311–1323 (2020). https://doi.org/10.1016/j.joule.2020.04.002

    Article  CAS  Google Scholar 

  99. Yamamoto, K., Iriyama, Y., Asaka, T., et al.: Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew. Chem. Int. Ed. 49, 4414–4417 (2010). https://doi.org/10.1002/anie.200907319

    Article  CAS  Google Scholar 

  100. Masuda, H., Ishida, N., Ogata, Y., et al.: Internal potential mapping of charged solid-state-lithium ion batteries using in situ Kelvin probe force microscopy. Nanoscale 9, 893–898 (2017). https://doi.org/10.1039/c6nr07971g

    Article  CAS  PubMed  Google Scholar 

  101. de Klerk, N.J., Wagemaker, M.: Space-charge layers in all-solid-state batteries; important or negligible? ACS Appl. Energy Mater. 1, 5609–5618 (2018). https://doi.org/10.1021/acsaem.8b01141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gao, B., Jalem, R., Ma, Y.M., et al.: Li+ transport mechanism at the heterogeneous cathode/solid electrolyte interface in an all-solid-state battery via the first-principles structure prediction scheme. Chem. Mater. 32, 85–96 (2020). https://doi.org/10.1021/acs.chemmater.9b02311

    Article  CAS  Google Scholar 

  103. Tsai, C.L., Roddatis, V., Chandran, C.V., et al.: Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Inter. 8, 10617–10626 (2016). https://doi.org/10.1021/acsami.6b00831

    Article  CAS  Google Scholar 

  104. Kasemchainan, J., Zekoll, S., Spencer Jolly, D., et al.: Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019). https://doi.org/10.1038/s41563-019-0438-9

    Article  CAS  PubMed  Google Scholar 

  105. Krauskopf, T., Mogwitz, B., Rosenbach, C., et al.: Diffusion limitation of lithium metal and Li–Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 9, 1902568 (2019). https://doi.org/10.1002/aenm.201902568

    Article  CAS  Google Scholar 

  106. Shen, F.Y., Dixit, M.B., Xiao, X.H., et al.: Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography. ACS Energy Lett. 3, 1056–1061 (2018). https://doi.org/10.1021/acsenergylett.8b00249

    Article  CAS  Google Scholar 

  107. Cheng, E.J., Sharafi, A., Sakamoto, J.: Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85–91 (2017). https://doi.org/10.1016/j.electacta.2016.12.018

    Article  CAS  Google Scholar 

  108. Yu, S., Siegel, D.J.: Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 29, 9639–9647 (2017). https://doi.org/10.1021/acs.chemmater.7b02805

    Article  CAS  Google Scholar 

  109. Ma, C., Chen, K., Liang, C.D., et al.: Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ. Sci. 7, 1638 (2014). https://doi.org/10.1039/c4ee00382a

    Article  CAS  Google Scholar 

  110. Yu, S., Siegel, D.J.: Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes. ACS Appl. Mater. Inter. 10, 38151–38158 (2018). https://doi.org/10.1021/acsami.8b17223

    Article  CAS  Google Scholar 

  111. Pesci, F.M., Brugge, R.H., Hekselman, A.K.O., et al.: Elucidating the role of dopants in the critical current density for dendrite formation in garnet electrolytes. J. Mater. Chem. A 6, 19817–19827 (2018). https://doi.org/10.1039/c8ta08366e

    Article  CAS  Google Scholar 

  112. Swamy, T., Park, R., Sheldon, B.W., et al.: Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet. J. Electrochem. Soc. 165, A3648–A3655 (2018). https://doi.org/10.1149/2.1391814jes

    Article  CAS  Google Scholar 

  113. Kazyak, E., Garcia-Mendez, R., LePage, W.S., et al.: Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility. Matter 2, 1025–1048 (2020). https://doi.org/10.1016/j.matt.2020.02.008

    Article  Google Scholar 

  114. Porz, L., Swamy, T., Sheldon, B.W., et al.: Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017). https://doi.org/10.1002/aenm.201701003

    Article  CAS  Google Scholar 

  115. Zhang, L.Q., Yang, T.T., Du, C.C., et al.: Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up. Nat. Nanotechnol. 15, 94–98 (2020). https://doi.org/10.1038/s41565-019-0604-x

    Article  CAS  PubMed  Google Scholar 

  116. Aguesse, F., Manalastas, W., Buannic, L., et al.: Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS Appl. Mater. Inter. 9, 3808–3816 (2017). https://doi.org/10.1021/acsami.6b13925

    Article  CAS  Google Scholar 

  117. Ping, W.W., Wang, C.W., Lin, Z.W., et al.: Reversible short-circuit behaviors in garnet-based solid-state batteries. Adv. Energy Mater. 10, 2000702 (2020). https://doi.org/10.1002/aenm.202000702

    Article  CAS  Google Scholar 

  118. Tian, H.K., Xu, B., Qi, Y.: Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites. J. Power Sources 392, 79–86 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.098

    Article  CAS  Google Scholar 

  119. Tian, H.K., Liu, Z., Ji, Y.Z., et al.: Interfacial electronic properties dictate Li dendrite growth in solid electrolytes. Chem. Mater. 31, 7351–7359 (2019). https://doi.org/10.1021/acs.chemmater.9b01967

    Article  CAS  Google Scholar 

  120. Luo, W., Gong, Y.H., Zhu, Y.Z., et al.: Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc. 138, 12258–12262 (2016). https://doi.org/10.1021/jacs.6b06777

    Article  CAS  PubMed  Google Scholar 

  121. Luo, W., Gong, Y.H., Zhu, Y.Z., et al.: Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater. 29, 1606042 (2017). https://doi.org/10.1002/adma.201606042

    Article  CAS  Google Scholar 

  122. Fu, K., Gong, Y., Fu, Z., et al.: Transient behavior of the metal interface in lithium metal-garnet batteries. Angew. Chem. Int. Ed. 56, 14942–14947 (2017)

    Article  CAS  Google Scholar 

  123. Shao, Y., Wang, H., Gong, Z., et al.: Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries. ACS Energy Lett. 3, 1212–1218 (2018)

    Article  CAS  Google Scholar 

  124. Huo, H.Y., Chen, Y., Li, R.Y., et al.: Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ. Sci. 13, 127–134 (2020). https://doi.org/10.1039/c9ee01903k

    Article  CAS  Google Scholar 

  125. Zhong, Y.R., Xie, Y.J., Hwang, S., et al.: A highly efficient all-solid-state lithium/electrolyte interface induced by an energetic reaction. Angew. Chem. Int. Ed. 59, 14003–14008 (2020). https://doi.org/10.1002/anie.202004477

    Article  CAS  Google Scholar 

  126. Shi, K., Wan, Z.P., Yang, L., et al.: In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 59, 11784–11788 (2020). https://doi.org/10.1002/anie.202000547

    Article  CAS  Google Scholar 

  127. Huang, Y., Chen, B., Duan, J., et al.: Graphitic carbon nitride (g–C3N4): an interface enabler for solid-state lithium metal batteries. Angew. Chem. Int. Ed. 59, 3699–3704 (2020). https://doi.org/10.1002/anie.201914417

    Article  CAS  Google Scholar 

  128. Inoue, Y., Suzuki, K., Matsui, N., et al.: Synthesis and structure of novel lithium-ion conductor Li7Ge3PS12. J. Solid State Chem. 246, 334–340 (2017). https://doi.org/10.1016/j.jssc.2016.12.001

    Article  CAS  Google Scholar 

  129. Liu, G.Z., Xie, D.J., Wang, X.L., et al.: High air-stability and superior lithium ion conduction of Li3+3xP1−xZnxS4−xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries. Energy Storage Mater. 17, 266–274 (2019). https://doi.org/10.1016/j.ensm.2018.07.008

    Article  Google Scholar 

  130. Xie, D.J., Chen, S.J., Zhang, Z.H., et al.: High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries. J. Power Sources 389, 140–147 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.021

    Article  CAS  Google Scholar 

  131. Han, F.D., Yue, J., Zhu, X.Y., et al.: Suppressing Li dendrite formation in Li2S–P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater. 8, 1703644 (2018). https://doi.org/10.1002/aenm.201703644

    Article  CAS  Google Scholar 

  132. Xu, R.C., Han, F.D., Ji, X., et al.: Interface engineering of sulfide electrolytes for all-solid-state lithium batteries. Nano Energy 53, 958–966 (2018). https://doi.org/10.1016/j.nanoen.2018.09.061

    Article  CAS  Google Scholar 

  133. Tian, Y.J., Ding, F., Zhong, H., et al.: Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries. Energy Storage Mater. 14, 49–57 (2018). https://doi.org/10.1016/j.ensm.2018.02.015

    Article  Google Scholar 

  134. Duan, H., Chen, W.P., Fan, M., et al.: Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry. Angew. Chem. Int. Ed. 59, 12069–12075 (2020). https://doi.org/10.1002/anie.202003177

    Article  CAS  Google Scholar 

  135. Deng, T., Ji, X., Zhao, Y., et al.: Tuning the anode–electrolyte interface chemistry for garnet-based solid-state Li metal batteries. Adv. Mater. 32, 2000030 (2020). https://doi.org/10.1002/adma.202000030

    Article  CAS  Google Scholar 

  136. Zhang, Z., Chen, S., Yang, J., et al.: Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl. Mater. Inter. 10, 2556–2565 (2018)

    Article  CAS  Google Scholar 

  137. Hou, G., Ma, X., Sun, Q., et al.: Lithium dendrite suppression and enhanced interfacial compatibility enabled by an ex situ SEI on Li anode for LAGP-based all-solid-state batteries. ACS Appl. Mater. Inter. 10, 18610–18618 (2018)

    Article  CAS  Google Scholar 

  138. Mo, F.J., Ruan, J.F., Sun, S.X., et al.: Lithium dendrites: inside or outside: origin of lithium dendrite formation of all solid-state electrolytes. Adv. Energy Mater. 9, 1970155 (2019). https://doi.org/10.1002/aenm.201970155

    Article  CAS  Google Scholar 

  139. Ohta, N., Takada, K., Zhang, L., et al.: Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater. 18, 2226–2229 (2006). https://doi.org/10.1002/adma.200502604

    Article  CAS  Google Scholar 

  140. Yang, J., Huang, B.X., Yin, J.Y., et al.: Structure integrity endowed by a Ti-containing surface layer towards ultrastable LiNi0.8Co0.15Al0.05O2for all-solid-state lithium batteries. J. Electrochem. Soc. 163, A1530–A1534 (2016). https://doi.org/10.1149/2.0331608jes

    Article  CAS  Google Scholar 

  141. Kitaura, H., Hayashi, A., Tadanaga, K., et al.: Electrochemical performance of all-solid-state lithium secondary batteries with Li–Ni–Co–Mn oxide positive electrodes. Electrochim. Acta 55, 8821–8828 (2010). https://doi.org/10.1016/j.electacta.2010.07.066

    Article  CAS  Google Scholar 

  142. Kitaura, H., Hayashi, A., Tadanaga, K., et al.: Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode. Solid State Ion. 192, 304–307 (2011). https://doi.org/10.1016/j.ssi.2010.08.019

    Article  CAS  Google Scholar 

  143. Ohta, N., Takada, K., Sakaguchi, I., et al.: LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem. Commun. 9, 1486–1490 (2007). https://doi.org/10.1016/j.elecom.2007.02.008

    Article  CAS  Google Scholar 

  144. Kato, Y., Hori, S., Saito, T., et al.: High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016). https://doi.org/10.1038/nenergy.2016.30

    Article  CAS  Google Scholar 

  145. Zhang, J., Zhong, H.Y., Zheng, C., et al.: All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2composite cathode and Li6PS5Cl electrolyte: effect of binder content. J. Power Sources 391, 73–79 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.069

    Article  CAS  Google Scholar 

  146. Chida, S., Miura, A., Rosero-Navarro, N.C., et al.: Liquid-phase synthesis of Li6PS5Br using ultrasonication and application to cathode composite electrodes in all-solid-state batteries. Ceram. Int. 44, 742–746 (2018). https://doi.org/10.1016/j.ceramint.2017.09.241

    Article  CAS  Google Scholar 

  147. Park, K.H., Oh, D.Y., Choi, Y.E., et al.: Solution-processable glass LiI–Li4SnS4 superionic conductors for all-solid-state Li-ion batteries. Adv. Mater. 28, 1874–1883 (2016). https://doi.org/10.1002/adma.201505008

    Article  CAS  PubMed  Google Scholar 

  148. Jung, S.H., Oh, K., Nam, Y.J., et al.: Li3BO3–Li2CO3: rationally designed buffering phase for sulfide all-solid-state Li-ion batteries. Chem. Mater. 30, 8190–8200 (2018). https://doi.org/10.1021/acs.chemmater.8b03321

    Article  CAS  Google Scholar 

  149. Ito, Y., Sakurai, Y., Yubuchi, S., et al.: Application of LiCoO2 particles coated with lithium ortho-oxosalt thin films to sulfide-type all-solid-state lithium batteries. J. Electrochem. Soc. 162, A1610–A1616 (2015). https://doi.org/10.1149/2.0771508jes

    Article  CAS  Google Scholar 

  150. Deng, S.X., Li, X., Ren, Z.H., et al.: Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries. Energy Storage Mater. 27, 117–123 (2020). https://doi.org/10.1016/j.ensm.2020.01.009

    Article  Google Scholar 

  151. Xiao, Y.H., Miara, L.J., Wang, Y., et al.: Computational screening of cathode coatings for solid-state batteries. Joule 3, 1252–1275 (2019). https://doi.org/10.1016/j.joule.2019.02.006

    Article  CAS  Google Scholar 

  152. Wan, H.L., Peng, G., Yao, X.Y., et al.: Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode. Energy Storage Mater. 4, 59–65 (2016). https://doi.org/10.1016/j.ensm.2016.02.004

    Article  Google Scholar 

  153. Yao, X.Y., Huang, N., Han, F.D., et al.: High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7, 1602923 (2017). https://doi.org/10.1002/aenm.201602923

    Article  CAS  Google Scholar 

  154. Lu, F.Q., Pang, Y.P., Zhu, M.F., et al.: A high-performance Li–B–H electrolyte for all-solid-state Li batteries. Adv. Funct. Mater. 29, 1809219 (2019). https://doi.org/10.1002/adfm.201809219

    Article  CAS  Google Scholar 

  155. Ohta, S., Komagata, S., Seki, J., et al.: All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53–56 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.073

    Article  CAS  Google Scholar 

  156. Han, F.D., Yue, J., Chen, C., et al.: Interphase engineering enabled all-ceramic lithium battery. Joule 2, 497–508 (2018). https://doi.org/10.1016/j.joule.2018.02.007

    Article  CAS  Google Scholar 

  157. Kitaura, H., Hayashi, A., Ohtomo, T., et al.: Fabrication of electrode–electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes. J. Mater. Chem. 21, 118–124 (2011). https://doi.org/10.1039/c0jm01090a

    Article  CAS  Google Scholar 

  158. Hou, L.P., Yuan, H., Zhao, C.Z., et al.: Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium–sulfur batteries. Energy Storage Mater. 25, 436–442 (2020). https://doi.org/10.1016/j.ensm.2019.09.037

    Article  Google Scholar 

  159. Kim, D.H., Oh, D.Y., Park, K.H., et al.: Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 17, 3013–3020 (2017)

    Article  CAS  Google Scholar 

  160. Li, Y., Cao, D.X., Arnold, W., et al.: Regulated lithium ionic flux through well-aligned channels for lithium dendrite inhibition in solid-state batteries. Energy Storage Mater. 31, 344–351 (2020). https://doi.org/10.1016/j.ensm.2020.06.029

    Article  Google Scholar 

  161. van den Broek, J., Afyon, S., Rupp, J.L.M.: Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors. Adv. Energy Mater. 6, 1600736 (2016). https://doi.org/10.1002/aenm.201600736

    Article  CAS  Google Scholar 

  162. Xu, S.M., McOwen, D.W., Zhang, L., et al.: All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Mater. 15, 458–464 (2018). https://doi.org/10.1016/j.ensm.2018.08.009

    Article  Google Scholar 

  163. Li, Q., Yi, T.C., Wang, X.L., et al.: In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy 63, 103895 (2019). https://doi.org/10.1016/j.nanoen.2019.103895

    Article  CAS  Google Scholar 

  164. Han, S.Y., Lewis, J.A., Shetty, P.P., et al.: Porous metals from chemical dealloying for solid-state battery anodes. Chem. Mater. 32, 2461–2469 (2020). https://doi.org/10.1021/acs.chemmater.9b04992

    Article  CAS  Google Scholar 

  165. Han, F.D., Gao, T., Zhu, Y.J., et al.: A battery made from a single material. Adv. Mater. 27, 3473–3483 (2015). https://doi.org/10.1002/adma.201500180

    Article  CAS  PubMed  Google Scholar 

  166. Lee, Y.G., Fujiki, S., Jung, C., et al.: High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 5, 299–308 (2020). https://doi.org/10.1038/s41560-020-0575-z

    Article  CAS  Google Scholar 

  167. Zhang, X.Y., Xiang, Q., Tang, S., et al.: Long cycling life solid-state Li metal batteries with stress self-adapted Li/garnet interface. Nano Lett. 20, 2871–2878 (2020). https://doi.org/10.1021/acs.nanolett.0c00693

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (51671135, 51971146, 51971147), the Major Program for the Scientific Research Innovation Plan of Shanghai Education Commission (2019-01-07-00-07-E00015), the Program of Shanghai Subject Chief Scientist (17XD1403000), the Shanghai Outstanding Academic Leaders Plan, the Shanghai Rising-Star Program (20QA1407100) and the General Program of Natural Science Foundation of Shanghai (20ZR1438400).

Author information

Authors and Affiliations

Authors

Contributions

SZ and CW proposed the idea for this review. YP and JP performed the literature search and data analysis, YP wrote the first draft of this review, and JY, SZ and CW revised this review.

Corresponding authors

Correspondence to Shiyou Zheng or Chunsheng Wang.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Y., Pan, J., Yang, J. et al. Electrolyte/Electrode Interfaces in All-Solid-State Lithium Batteries: A Review. Electrochem. Energ. Rev. 4, 169–193 (2021). https://doi.org/10.1007/s41918-020-00092-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-020-00092-1

Navigation